Cardiac complications after ECT

Prof George Kirov

Cardiff University

After the administration of electric current there is a surge of cholinergic and adrenergic stimulation

Complications:

Asystole Bradycardia Tachycardia Arrhythmias Hypertension ECG changes Cardiac enzyme changes

Death rates are extremely low:

They are comparable to the mortality associated with minor procedures that involve anaesthesia

Mortality

• Mortality: 1:10,000 patients, 1:80,000 ECTs

Mortality after electroconvulsive therapy

Bradley V. Watts, Talya Peltzman and Brian Shiner

BJPsych ^{The 1}219,

The British Journal of Psychiatry (2021) 219, 588–593. doi: 10.1192/bjp.2021.63

• No excess mortality after ECT: relative odds of all-cause mortality in the year after their index course of 0.87.

Risk of serious medical events in patients with depression treated with electroconvulsive therapy: a propensity score-matched, retrospective cohort study

Tyler S Kaster, Simone N Vigod, Tara Gomes, Rinku Sutradhar, Duminda N Wijeysundera, Daniel M Blumberger

THE LANCET Psychiatry

Volume 8, Issue 8, August 2021, Pages 686-695

	ECT-exposed		ECT-unexposed (ref)			Cause-specific HR (95% CI)
	n/N	Incidence (per 1000 person-years)	n/N	Incidence (per 1000 person-years)		
Death by suicide (primary ou	tcome)					
Crude analysis	27/4982	5.84	423/62 345	7.26		0.80 (0.54-1.18)
Age-only weighting	27/4982	5.84	38/4988	8.30		0.70 (0.47–1.05)
Primary weighted analysis	27/4982	5.84	54/5304	10.90 -		0.53 (0.31–0.92)
Non-suicide death (secondar	y outcome)					
Crude analysis	111/4982	24.00	753/62345	12.92	-	1.86 (1.52–2.27)
Age-only weighting	111/4982	24.00	139/4988	30.10		0.80 (0.65-0.98)
Primary weighted analysis	111/4982	24.00	143/5304	29.00		0.83 (0.61–1.12)
All-cause mortality (seconda	ry outcome)					
Crude analysis	138/4982	29.83	1176/62 345	20.18		1.48 (1.24–1.76)
Age-only weighting	138/4982	29.83	178/4988	38.36		0.78 (0.65–0.93)
Primary weighted analysis	138/4982	29.83	197/5304	39.88		0.75 (0.58-0.97)
				0-3 Reduced ris	sk from ECT Increased risk from	ECT

REVIEW

The Cardiovascular Side Effects of Electroconvulsive Therapy and Their Management

Adriana P. Hermida, MD, * Mamoona Mohsin, MD, † Ana P. Marques Pinheiro, MD, * Elizabeth McCord, MD, * John C. Lisko, MD, ‡ and Lyndsay W. Head, MD§

Journal of ECT • Volume 38, Number 1, March 2022

ECT Journal Club, at 12 noon London time, first Wednesday of each month (almost each month)

Asystole

- After the electric stimulus there is initial stimulation of vagal nuclei that lead to parasympathetic surge
- This can cause bradycardia, hypotension and a transient asystole
- Q: How common is asystole during ECT (>2sec)?
 - 2%
 10%
 50%
 GM NO BREATH // ** etCO₂ LOW
 V thythm // 60
 SpO₂ 100
 AGT1 10

Hase & Kettl, 2005: Asystole (>2sec) recorded 57 times out of 117 observations (48.7%).

Burd *et al*, 1998: 65.8% of a group of elderly patients experienced asystole at some time during their course of ECT (>5sec)

All resolved spontaneously

Risk factors for asystole/bradycardia

- Age > 65 years
- Use of beta blockers
- Cardiac disease
- Hypoxia
- High dose of succinylcholine
- Subconvulsive stimuli
- No anticholinergic pre-treatment
- Electrode placement

The role of succinylcholine

Because of the structural resemblance to acetylcholine, succinylcholine can cause bradycardia and asystole by stimulation of cardiac muscarinic receptors in the sinoatrial node. Even more likely to occur after re-dosing before re-stimulation

Q: Which electrode placement is least likely to cause asystole?

 Bitemporal
 Bifrontal
 Right unilateral

 11.6% (14/121)
 2.6% (2/79)
 48.4% (39/80)

The effect of electrode placement and pulsewidth on asystole and bradycardia during the electroconvulsive therapy stimulus a

Patrick T. Stewart, Colleen K. Loo ➡, Ross MacPherson, Dusan Hadzi-Pavlovic Author Notes

International Journal of Neuropsychopharmacology, Volume 14, Issue 5, June 2011, Pages 585–594, https://doi.org/10.1017/S1461145710001458

Predictors of Bradycardia During the Stimulation Phase of Electroconvulsive Therapy

Josef Nagler, MD*† and Martin Geppert, MD*

(JECT 2011;27: 201-206)

Mean distance between electrodes = 10.3cm

Bifrontal placement partially avoids the brainstem nuclei

Regional electric field induced by electroconvulsive therapy in a realistic finite element head model: Influence of white matter anisotropic conductivity

Won Hee Lee ^{a,b}, Zhi-De Deng ^{b,c}, Tae-Seong Kim ^d, Andrew F. Laine ^a, Sarah H. Lisanby ^{b,e}, Angel V. Peterchev ^{b,f,*}

Prevention of asystole and bradycardia

- Avoid pre-treatment with beta-blockers
- Treat with Glycopyrrolate (anticholinergic)
- Routine treatment with Glycopyrrolate is still debated and may not be necessary
- Asystole usually resolves on its own without any clinical consequence
- Use Bifrontal ECT
- Use a different muscle relaxant

Hypertension and tachycardia

- After the initial parasympathetic surge, there is a sympathetic surge that causes hypertension and tachycardia
- BP increases on average to 179/97, pulse rate to 126 bpm
- Usually well tolerated but in high risk patients antihypertensive medication should be used
- The ideal agent should have rapid action and quick elimination
- Q: Which beta-blocker is the most suitable for use in ECT?

Esmolol

Ultra-short-acting beta-one antagonist Half-life 9 minutes Supported by a literature review:

Review > Br J Anaesth. 2014 Jul;113(1):43-51. doi: 10.1093/bja/aeu153.

Beta-blocking agents during electroconvulsive therapy: a review

E Boere¹, T K Birkenhäger², T H N Groenland³, W W van den Broek²

Other drugs used to treat hypertension and tachycardia

Calcium channel blockers

Dexmedetomidine:

α2 pre-synaptic receptor agonist, causes sedation and analgesia. These receptors regulate the release of norepinephrine through a negative feedback mechanism.

Similar to **clonidine'**S action

Seizure quality rating scale (adapted from Sartorius et al, 2020)

Seizure Quality Rating Scale

- Visible seizure duration (duration of visible muscle contractions)
 - \circ Less than 10s 0
 - o 10-15s 1
 - \circ Over 15s 2
- **EEG seizure duration** (duration of seizure activity on the EEG)
 - \circ Less than 20s 0
 - \circ Over 20s 1
- **Mid-ictal amplitude** (If the overall amplitude of the seizure activity on the EEG is low, medium, or high)
 - \circ Low (<50%) 0
 - Medium (50%-99%) **1**
 - \circ High (100%) 2
- **Interhemispheric coherence** (Is there overall coherence between each hemisphere on the EEG)
 - \circ No-0
 - \circ Yes -1
- **Postictal suppression** (whether there is a clear end point and flat line to mark the end of seizure activity on the EEG)
 - $\circ \quad Poor-0$
 - Fair **1**
 - $\circ \quad Good-2$
- **Peak heart rate** (maximum heart rate measured during the seizure)
 - Less than 100 0
 - o 100-124 **1**
 - $\circ > 125 2$

Effect of anaesthesia on hypertension and tachycardia

- Propofol causes hypotension, vasodilation, decreased cardiac output, and a reduction in sympathetic response and seizure duration.
- Ketamine may cause hypertension and tachycardia

TABLE 2. Hypertension and Tachycardia

Considerations

- Thorough cardiac evaluation before initiating ECT including evaluation for HTN, CHF, conduction abnormalities, HR or rhythm abnormalities, coronary artery disease
- Prophylaxis with antihypertensive drugs in presence of cardiac risk factor as above
- Prophylaxis with antihypertensive drugs if patient experiences substantial HTN and/or tachycardia during ECT
- Choice of anesthesia and antihypertensive drug on a case-by-case basis per requirement
- Avoid β -blocker use unless risk of not taking it is greater than consequences of its interaction with ECT

However: Beta-blockers may be associated with asystole

Arrhythmia is the most common complication of ECT

- Premature atrial contractions
- Premature ventricular contractions
- Bigeminy
- Ventricular tachycardia
- Heart block

Triplet

Ventricular tachycardia

Which electrode placement is associated with the lowest frequency of arrhythmias?

The effect of electrode placement and pulsewidth on asystole and bradycardia during the electroconvulsive therapy stimulus a

Patrick T. Stewart, Colleen K. Loo ➡, Ross MacPherson, Dusan Hadzi-Pavlovic Author Notes

International Journal of Neuropsychopharmacology, Volume 14, Issue 5, June 2011, Pages 585–594, https://doi.org/10.1017/S1461145710001458

No instances of bigeminy with bifronal ECT

Methohexital and propofol are associated with a reduction in arrhythmias compared to thiopental Premedication with atropine may <u>decrease</u> the occurrence of premature atrial contractions

Atrial fibrillation (AF)

- There are case reports of new-onset AF after ECT
- There are cases of chronic AF converting to sinus rhythm after ECT
- Due to the risk of embolization with cardioversion, Petrides & Fink (1996) recommend anticoagulation of AF patients during ECT courses

Recommendations

TABLE 3. Arrhythmia

Considerations

Continuous ECG monitoring during ECT

More caution in patients age >60 at risk

If possible, stop or stabilize medicines that interfere with cardiac conduction

Have a readily available defibrillator

Consider BF stimulus in case of recurrent, prolonged arrhythmias

Cardiac enzymes

- 3 small studies (<100 cases)
- Cardiac troponin / cardiac troponin I
- 4-5% of cases had transient elevations, MI diagnosed in two cases. (Martinez *et al*, 2011)
- "Given the physiologic stress associated with both anaesthesia and ECT, a mild elevation in troponin is not unexpected and may be clinically insignificant"
- "In the absence of symptoms, routine collection of troponins is <u>not clinically indicated</u>"

ECT has been given to patients with pre-existing cardiovascular disease

- Heart failure
- Abdominal aortic aneurisms
- Cerebral aneurisms
- Aortic stenosis
- Pulmonary embolism
- Findings are from case reports only and do not provide proof of safety

Safety of Electroconvulsive Therapy in Patients With a History of Heart Failure and Decreased Left Ventricular Systolic Heart Function

Fernando A. Rivera, MD,* Maria I. Lapid, MD,† Shirlene Sampson, MD,† and Paul S. Mueller, MD*

(J ECT 2011;27: 207-213)

- 35 patients treated at the Mayo clinic 1995-2009
- Median age 77 years
- Left ventricular ejection fraction 40%-15%
- All tolerated ECT well
- i.v. beta-blockers given to 26 patients

Conclusions

- Heart rate and blood pressure increase by 20-30%
- Older patients are at a higher risk
- Most complications are minor and manageable
- Cardiac disease increases risk for depression and depression increases risk for cardiac disease. These patients need effective treatments
- With appropriate caution and management, highrisk patients can be safely treated with ECT

Part 2: Pacemakers

Electroconvulsive Therapy in Patients With Cardiac Implantable Electronic Devices A Case Report and Systematic Review of Published Cases

Abhiram Narasimhan Purohith, MD, * Sivapriya Vaidyanathan, MD, * Suma T. Udupa, DNB, * Ravindra N. Munoli, MD, * Sheena Agarwal, MBBS, * Mukund A. Prabhu, MD, DM, PDF,† and Samir Kumar Praharaj, MD*

> From the Departments of *Psychiatry and †Cardiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India. *J ECT*, 2022

The heart conduction system

Pacemaker indications

Sick sinus syndrome Syncope Bradycardia Cardiac arrest Heart block Ventricular tachycardia Heart failure

Types of pacemakers

Single lead: a single lead is attached in the right atrium or right ventricle Dual lead: There is one lead in the right atrium and one in the right ventricle ANTO PERSONAL PROPERTY AND AND ADDRESS OF ADDRESS ADDRESS OF ADDRE

Biventricular pacemaker: There is one lead in the right ventricle and one in the left ventricle. There can be a third lead in the right atrium as well.

Implantable cardioverter-defibrillator (ICD)

© MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH. ALL RIGHTS RESERVED

An ICD continuously monitors the heartbeat and delivers electric shocks, when needed, to restore a regular heart rhythm. Many devices combine a pacemaker and ICD

Sensing and pacing

- Sensing: Pacemaker leads sense the heart electrical activity. It "knows" that the heart has contracted.
- Pacing: If the pacemaker does not "sense" a beat, it will deliver a small electrical charge to trigger a heartbeat.

Base rate (the slowest heart rate allowed)

If the pacemaker detects physical activity, it gently increases the heart rate. Does this increase happen during seizure?

What can go wrong during ECT?

- Implantable Cardioverter Defibrillator (ICD) can trigger a shock (defibrillation) around the ECT
- Electromagnetic interference can affect sensing and the pacemaker can misinterpret the muscular or electrical activity as normal heart beats and stop pacing
- Fasciculations in skeletal muscles during muscle relaxation can inhibit the pacemaker (Modern pacemakers are not affected)
- Electrical activity can damage the pacemaker

- Thirty-five publications across 53 years (1967–2021) reported on 76 patients
- Did not find any published report on ECT in patients with cardiac resynchronization therapy device.
- The overall quality of reported cases ranged from good (all 5 parameters are described) to moderate (few parameters are missing).
- 8 (11%) did not have the description and pacing mode
- 61 patients (806 sessions) with pacemakers,
- 13 patients (148 sessions) with ICDs,
- 25 sessions in one patient with pacemaker + ICD
- Most patients (76%, n = 57) were older than 65 years

Indications for pacing / ICD

• For pacemaker implantation: 1) atrioventricular (AV) block (43.5%, n = 27),

2) sinus node dysfunction (27.4%, n = 17),

- For ICD: Ventricular tachycardia was most common indication (64.2%, n = 9)
- Most common pacing mode: dual chamber with dual sensing pacemakers (51.6%, n = 32), followed by ventricular pacing with ventricular sensing mode (27.4%, n = 17).

What was done to the pacemaker/ICD?

Pacemakers (61 patients):

The pacing mode was <u>unchanged</u> during the ECT sessions in 45 patients (77.4%). No adverse effects

For 66 ECT sessions pacing was <u>changed</u> to asynchronous mode (no sensing)

ICDs (13 patients):

In 10 out of 13 patients who had ICD, the device was <u>deactivated</u> before ECT sessions and later reprogramed

One reported instance of inappropriate ICD shock delivery

Adverse events in 25% of cases

- Premature ventricular contraction was the most common adverse effect but it recovered spontaneously.
- Hypertension was the most common (7.1%) adverse effect that needed medical intervention (in 70 out of 979 ECT sessions), easily managed without any serious consequences.
- No reports of serious adverse effects that necessitated stopping ECT.
- Other complications: Atrial flutter, atrial fibrillation, tachycardia, one transient ventricular tachycardia

Author	Age	Sex	Type of CIED	Action	Adverse Event	No. Sessions	Possible Cause	Management
Ballenger ¹³	50	М	PM (VVI)	Unchanged	Atrial flutter	1	Anticholinergic premedication	Cardioversion and procainamide.
Alexopoulos et al ⁵⁴	78	М	PM (VVI)	Unchanged	PVC	1	ECT	None
Regestein et al13	76	F	VOO	VOO	PVC	3	ECT	None
Silverman et al16	80	M	PM	NR	PVC	1	ECT	NR
Goldberg et al ¹⁷	54	M	ICD	Deactivation	Hypertension	8	ECT	Labetalol
	65	M	ICD	Deactivation	Tachypnea	1	Unknown	Furosemide
					Hypertension	1	ECT	Ephedrine
					Wide complex tachycardia	1	Unknown	Magnesium sulphate and neosynephrine
Lapid et al18	78	М	ICD	Deactivation	Tachycardia	1	Anticholinergic premedication	Esmolol
Dolenc et al ⁶	80	F	PM (DDD)	Unchanged	PVC.	37	ECT	None
	72	M	PM (DDD)	Unchanged	PVC	15	ECT	None
	89	M	PM (DDDR)	Unchanged	PVC	108	ECT	None
	58	F	ICD	Unchanged	Tachycardia, rate dependent LBBB and Hypotension	1	Anticholinergic premedication	Esmolol
	87	Μ	PM (DDD)	Unchanged	SVT	1	Unknown	Amiodarone and Esmolo
MacPherson et al7	86	F	PM (DDD)	Unchanged	Atrial fibrillation	1	Unknown	Hydmlazine and esmolol
Lynch et al ¹⁹	56	М	ICD and CMD	Deactivation	Hypertension	12	ECT	Esmolol prestimulation for initial 4 ECT and post-ECT nitroglycerin and hydralazine later.
Davis et al ²⁰	68	М	ICD	Deactivation	Tachycardia, Hypertension	1	ECT	Esmolol and Labetalol
	87	F	ICD	Deactivation	Tachycardia, Hypertension	9	ECT	Labetalol
Kokras et al [#]	62	M	PM (DDDR)	DDD	Hypertension	1	Anticholinergic premedication	Glyceryl trinitrate and clonidine
Streckenbach et al ¹²	49	F	ICD	Unchanged	Inappropriate ICD shock delivery	1	ECT mediated EMI	Deactivation of ICD in subsequent ECTs
Magula et al ²¹	64	F	ICD	NR	Hypertension	38	ECT	Labetalol and nitroglycenir
					Transient VT	8	ECT	Lignocaine
Current report	55	М	PM (DDDR)	Unchanged	Tachycardia	5	Anticholinergic premedication	None

CMD, cardiac contractility modulator; DDD, dual chamber dual sensing; DDDR, dual chamber dual sensing rate modulated; LBBB, left bundle branch block; NR, not reported; PM, pacemaker; PVC, premature ventricular contraction; SVT, supraventricular tachycardia; VVI, ventricular demand pacing; VOO, asynchronous ventricular pacing.

Recommendations from paper and ECT Handbook

- Discuss with cardiologist and electrophysiologist
- Patients with pacemakers can be treated safely. No need to switch off device
- Glycopyrrolate if needed
- Ensure proper muscle relaxation
- Use bifrontal ECT
- Patients with cardioverted defibrillator (ICD): a cardiology technician should be present. <u>Switch off or</u> <u>leave on</u>? It is possible to leave it active, as the benefit of shocking a life-threatening arrhythmia outweighs the risk of delivering a wrong shock (Bryson *et al*, 2015).

Automatic Implantable Cardioverter Defibrillator in Electroconvulsive Therapy

Bryson, Ethan O. MD^{*}; Popeo, Dennis M. MD[†]; Briggs, Mimi C. BA[†]; Pasculli, Rosa M. BA[†]; Kellner, Charles H. MD[†] Author Information⊚

The Journal of ECT: March 2015 - Volume 31 - Issue 1 - p e22

- 85-year-old woman with treatment refractory depression and an implanted cardioverter-defibrillator. Dual chamber at 60 beats per minute
- Before the first ECT treatment, the device was deactivated via magnet applied to the chest wall, and no hemodynamic changes were noted
- The magnet was removed from the chest wall immediately after the end of seizure activity
- No ventricular arrhythmias or tachycardia at the first 4 treatments
- Decision was made to leave the device active for the remaining treatments

The experience of Declan McLoughlin's group

- "Our experience with regular pacemakers is that there is no major issue and we proceed as normal.
- For implantable defibrillators, one needs a cardiac technician to turn off the device just before the ECT session and then turn it back on again."

Cardiff case. 1st stimulation, 126mC

Bradycardia during the first 11 seconds, no action, proceed to 2nd stimulation

Cardiff case, 2nd stimulation, 184mC

Second stimulation is followed by 9s asystole, then sinus rhythm, but after 5 minutes the rate slows down to 29/min. Escape rhythm generated in the AV node. Transferred to the general hospital, one week later implanted with pacemaker.

"This lady has a dual-chamber pacemaker. It is programmed to sense her SA node rate and to pace the ventricles accordingly. If her SA node rate increases due to exercise/stress/emotion, then the pacemaker rate will increase accordingly. Her rate will not drop below 60bpm."

Figure: ECT with pacemaker left on. No problems around ECT so far.

